
MAT127 Fall 2023

Practice test III

Location of the Final Exam: Mon. Dec. 18, 11:15-1:45 pm

room Javits 100

Final Exam will cover sections 7.1-7.6, 8.1-8.8,

You will be allowed to use calculators. The Final Exam will

contain 8 problems (some multipart)

The assessment will draw upon the content discussed in

class sessions, homework assignments, quizzes, practice

tests, as well as the material previously examined in the

midterms. The test aims to comprehensively evaluate the

knowledge acquired throughout these learning components.

Be prepared to demonstrate understanding and application

of the concepts covered in these areas during the test

This practice test covers only Sections 7.4 to 7.6,

second-order differential equations and material related to

the radius of convergence. For other content, please consult

previous practice tests.
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Problem 1. Consider the following system of differential equations describing a predator-

prey model (x, y are population sizes measured in hundreds):

x′ = x(2− x) + 4xy

y′ = y − xy

(1) Which of the two variables represents the prey population?

(2) Suppose y(t0) = 0 for some time t0. Explain why this implies that y(t) = 0 for all

values of t.

(3) Describe in words the fate of the predator population when the prey population

becomes extinct.

Solution. (1) The variable y represents the prey population due to the negative coeffi-

cient, specifically equal to −1, associated with the xy term.

(2) In the equation y′ = y(1 − x), y = 0 implies the condition y′ = 0, which in turn

implies that the value of y(t) remains constant, indicating that the prey population

doesn’t undergo any changes.

(3) When the prey population becomes extinct (y = 0), the equation for x transforms

into x′ = x(2 − x) = 2x(1 − x/2), which is the logistic equation. As time t tends

towards infinity (t→∞), the solution approaches x = 2, representing the carrying

capacity of the predator population. This observation indicates that in such a sce-

nario, the predator population persists without extinction, suggesting the presence

of omnivorous or mixed-diet predators in this ecological context.
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Problem 2. Consider the following assumptions concerning the fraction of a piece of bread

covered by mold.

• Mold spores fall on the bread at a constant rate.

• When the proportion covered is small, the fraction of the bread covered by mold

increases at a rate proportional to the amount of bread covered.

• When the fraction of the bread covered by mold is large, the growth rate decreases.

• In order to survive, mold must be in contact with the bread.

Using these assumptions, write a differential equation that models the proportion of a piece

of bread covered by mold. Explain your model in one or two carefully worded sentences.

Note that there is more than one reasonable model that fits these assumptions.

Solution. One possible model is

P ′ = kP (1− P )

where P is the fraction of the bread covered by mold. When P is small, the growth is

nearly exponential. As P approaches 1, the growth rate decreases (but is still positive).
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Problem 3. Find the general solutions of the following ODEs.

(a) y′′ + 2y′ + y = 0

(b) y′′ + y′ − 6y = 0

(c) y′′ + 2y′ + 4y = 0

Solution. (a) The characteristic equation is r2 + 2r + 1 = 0. This has a repeated root

r = −1. The general solution of the ODE is y(t) = c1e
−t + c2te

−t.

(b) The characteristic equation is r2 + r − 6 = 0. The solutions are r = 2,−3. The

general solution of the ODE is y(t) = c1e
2t + c2e

−3t.

(c) The characteristic equation is r2 + 2r + 4 = 0. The solutions are r = −1 ±
√

3i.

The general solution of the ODE is y(t) = c1e
−t cos(

√
3t) + c2e

−t sin(
√

3t).
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Problem 4. Newton’s law of cooling states that the temperature of an object changes at

a rate proportional to the difference between its temperature and the surrounding temper-

ature. Let T (t) be the temperature of the object and Ts be the surrounding temperature.

We get
dT

dt
= k(T − Ts)

where k is a constant. Suppose that the temperature of the object is 200◦F in the beginning

and 1 minute later, it has cooled down to 190◦F in a room at 70◦F. Find the time when

the temperature of the object becomes 150◦F.

Solution. The general solution to the differential equation dT
dt = k(T − Ts) is obtained

through separation of variables and integrating both sides:

Separate the variables:
dT

T − Ts
= k dt

Integrate both sides: ∫
1

T − Ts
dT =

∫
k dt

This gives:

ln |T − Ts| = kt + C

Exponentiating both sides to eliminate the logarithm:

|T − Ts| = ekt+C

Further simplification gives:

|T − Ts| = Cekt

Where C = eC is the constant of integration.

Now, the equation |T − Ts| = Cekt can be rewritten as:

T − Ts = Cekt

or

T = Cekt + Ts

This is the general solution to the differential equation dT
dt = k(T − Ts).
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.

First, let’s determine the value of the constant C using the initial condition:

Given T (0) = 200◦F:

200 = Cek·0 + 70

C = 130

So, the equation becomes:

T = 130ekt + 70

By the assumption T (1) = 190⇒ k = ln(12/13) and T = 130eln(12/13)t+70 = 130(12/13)t+

70

Now, to find the time when T = 150◦F: we set 130(12/13)t+70 = 150⇒ t = log(8/13)
log(12/13) ≈

6.06561 �
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Problem 5. Determine the interval of convergence of the series

(1)
∑∞

n=2
nxn

lnn

(2)
∑∞

n=1
xn

n
√
n

(3)
∑∞

n=0 n!xn

Solution. (1) Let an = n·xn

lnn . We will use the ratio test to compute the radius of

convergence for
∑∞

n=2 an.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n + 1) · |xn+1| · lnn

n · |xn| · ln(n + 1)

= lim
n→∞

n + 1

n
· lnn

ln(n + 1)
· |x|

After using the l’Hospital’s rule we get

= 1 · |x|

Thus, the power series converges if |x| < 1 and diverges if |x| > 1. The radius of

convergence is 1. Analysis of the end-points: x = 1. The series becomes
∑∞

n=2
n

lnn .

The limit limn→∞
n

lnn = limx→∞
x

lnx By l’Hospital’s rule the last limit is equal to

limx→∞
1

1/x = limx→∞ x =∞⇒ the series is divergent.

x = −1. The series becomes
∑∞

n=2
(−1)n
lnn . As in the case x = 1 the series is

divergent.

The interval of convergence −1 < x < 1.

(2) Use Root Test of convergence If
∑∞

n=1 an. If limn→∞ |an|
1
n < 1 the series is con-

vergent. If limn→∞ |an|
1
n > 1 the series is divergent. In our case

|an|
1
n =

∣∣∣∣ xnn
√
n

∣∣∣∣ 1n =
1

n
√
n

n

|x| = 1

n
1√
n

|x|

lim
n→∞

1

n
1√
n

= lim
x→∞

1

x
1√
x

=
1

e
limx→∞

ln x

x1/2
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We use l’Hospital’s rule to compute the last limit:

lim
x→∞

lnx

x1/2
= lim

x→∞
.

1/x

1/2x−1/2
= 2 lim

x→∞
x−1/2 = 0

and

lim
n→∞

1

n
1√
n

= 1/e0 = 1

We conclude that

lim
n→∞

|an|
1
n = |x|

The series converges for |x| < 1 and diverges for |x| > 1. The border line cases:

x = 1. The series becomes
∑∞

n=1
1

n
√
n If n > 4 ⇒

√
n >

√
4 = 2 ⇒ n

√
n > n2.

After taking the reciprocals, we obtain the inequality 1
n
√
n ≤ 1

n2 . We conclude that

∞∑
n=4

1

n
√
n
<
∞∑
n=4

1

n2

The last series is convergent because it is p-series with p = 2.

x = −1
∑∞

n=1
(−1)n
n
√

n . This is an alternating series
∑∞

n=1 an with an = (−1)nf(n).

f(x) = 1

xx1/2
. f ′(x) = (e−x

1/2 ln(x))′ = x−
√
x
(
− 1√

x
− ln(x)

2
√
x

)
. The derivative is

negative for x > 1. f(x) is a decreasing function. From x = 1 case we know that

limn→∞
1

n
√
n = 0. By alternating series test

∑∞
n=1

(−1)n
n
√
n is convergent.

(3) an = n!xn We will be using the ratio test:
∣∣∣an+1

an

∣∣∣ =
∣∣∣ (n+1)!xn+1

n!xn

∣∣∣ = (n + 1)|x|.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1 only if x = 1

Interval of convergence is degenerate and consists of one point x = 0.
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